The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane
نویسندگان
چکیده
The Chlamydomonas FLA10 gene was shown to encode a flagellar kinesin-like protein (Walther, Z., M. Vashishtha, and J.L. Hall. 1994. J. Cell Biol. 126:175-188). By using a temperature-sensitive allele of FLA10, we have determined that the FLA10 protein is necessary for both the bidirectional movement of polystyrene beads on the flagellar membrane and intraflagellar transport (IFT), the bidirectional movement of granule-like particles beneath the flagellar membrane (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. (USA). 90:5519-5523). In addition, we have correlated the presence and position of the IFT particles visualized by light microscopy with that of the electron dense complexes (rafts) observed beneath the flagellar membrane by electron microscopy. A role for FLA10 in submembranous or flagellar surface motility is also strongly supported by the immunolocalization of FLA10 to the region between the axonemal outer doublet microtubules and the flagellar membrane.
منابع مشابه
The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein
Many genes on the uni linkage group of Chlamydomonas affect the basal body/flagellar apparatus. Among these are five FLA genes, whose mutations cause temperature-sensitive defects in flagellar assembly. We present the molecular analysis of a gene which maps to fla10 and functionally rescues the fla10 phenotype. Nucleotide sequencing revealed that the gene encodes a kinesin-homologous protein, K...
متن کاملThe kinesin-homologous protein encoded by the Chlamydomonas FLA10 gene is associated with basal bodies and centrioles.
We previously reported that the FLA10 locus on the uni linkage group of Chlamydomonas encodes a kinesin homologous protein, KHP1. The fla10 phenotype, which is a temperature-sensitive defect for flagellar assembly and maintenance, is rescued by transformation with the wild-type KHP1 gene. In the present study we identify the molecular defect associated with the fla10 mutation and examine the su...
متن کاملKinesin-II is required for flagellar sensory transduction during fertilization in Chlamydomonas.
The assembly and maintenance of eucaryotic flagella and cilia depend on the microtubule motor, kinesin-II. This plus end-directed motor carries intraflagellar transport particles from the base to the tip of the organelle, where structural components of the axoneme are assembled. Here we test the idea that kinesin-II also is essential for signal transduction. When mating-type plus (mt+) and mati...
متن کاملChlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons
We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519-5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and ne...
متن کاملKinesin II and regulated intraflagellar transport of Chlamydomonas aurora protein kinase.
The assembly and functioning of cilia and flagella depend on a complex system of traffic between the organelles and the cell body. Two types of transport into these organelles have been identified. The best characterized is constitutive: in a process termed intraflagellar transport (IFT), flagellar structural components are continuously carried into cilia and flagella on transport complexes ter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 131 شماره
صفحات -
تاریخ انتشار 1995